
Surveying the Developer Experience of Flaky Tests

Owain Parry
University of Sheffield

UK

Gregory M. Kapfhammer
Allegheny College

USA

Michael Hilton
Carnegie Mellon University

USA

Phil McMinn
University of Sheffield

UK

ABSTRACT

Test cases that pass and fail without changes to the code under test

are known as flaky. The past decade has seen increasing research

interest in flaky tests, though little attention has been afforded to

the views and experiences of software developers. In this study,

we utilized a multi-source approach to obtain insights into how

developers define flaky tests, their experiences of the impacts and

causes of flaky tests, and the actions they take in response to them.

To that end, we designed a literature-guided developer survey that

we deployed on social media, receiving 170 total responses. We also

searched on StackOverflow and analyzed 38 threads relevant to

flaky tests, offering a distinct perspective free of any self-reporting

bias. Through a mixture of numerical and thematic analyses, this

study reveals a number of findings, including (1) developers strongly

agree that flaky tests hinder continuous integration; (2) developers

who experience flaky tests more often may be more likely to ignore

potentially genuine test failures; and (3) developers rate issues in

setup and teardown to be the most common causes of flaky tests.

CCS CONCEPTS

• Software and its engineering → Software testing and de-

bugging.

KEYWORDS

Software Testing; Flaky Tests; Qualitative Research.

ACM Reference Format:

Owain Parry, Gregory M. Kapfhammer, Michael Hilton, and Phil McMinn.

2022. Surveying the Developer Experience of Flaky Tests. In 44nd Interna-

tional Conference on Software Engineering: Software Engineering in Practice

(ICSE-SEIP ’22), May 21–29, 2022, Pittsburgh, PA, USA. ACM, New York, NY,

USA, 10 pages. https://doi.org/10.1145/3510457.3513037

1 INTRODUCTION

Test cases that pass and fail without changes to the code under

test are called flaky and are prevalent in industry [24, 32]. Flaky

tests are a major snag for software developers because they disrupt

continuous integration [14], harm productivity [29, 33], and lead

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

ICSE-SEIP ’22, May 21–29, 2022, Pittsburgh, PA, USA

© 2022 Association for Computing Machinery.
ACM ISBN 978-1-4503-9226-6/22/05. . . $15.00
https://doi.org/10.1145/3510457.3513037

to a loss of confidence in testing [45]. They are also a persistent

problem in research, limiting the applicability of state-of-the-art

techniques for test selection and prioritization [31, 36, 48].

Despite an increasing volume of studies on test flakiness [21,

30, 40, 46], there is as yet little focus on the views and experiences

of developers. Since flaky tests are primarily a developer problem,

there is an underutilized opportunity to acquire valuable insights

from those who experience them first-hand.Where previous studies

do exist, they focus on specific organizations and developers’ self-

reported experiences [17, 23], two potential sources of bias [13].

In this paper, we examine multiple sources to understand how

developers define and react to flaky tests and their experiences of

the impacts and causes. We consulted both published and gray liter-

ature to inform the design of a developer survey that we deployed

on social media as broadly as possible, receiving 170 responses.

In addition to the survey, we searched StackOverflow and fil-

tered the results to produce a dataset of 38 threads. We performed

thematic analysis [11] on the questions and accepted answers in

these threads to gain insights into the flaky tests for which develop-

ers require assistance to diagnose and repair. Through this unique

perspective, we were able to identify themes regarding additional

causes and actions that were not revealed by the developer survey.

Some of our findings support previous literature while several

others were unanticipated. For example, we found that participants

who experience flaky tests more often may be more likely to ignore

potentially genuine test failures, supporting the position of experts

such as Martin Fowler [19]. We also found that participants rated

asynchronicity and concurrency as only the fourth and fifth most

common causes of flaky tests respectively, despite studies reporting

these to be the most common [17, 30, 40]. Finally, we make all our

data and artifacts publicly available in our replication package [6].

In summary, the main contributions of this study are as follows:

Contribution 1: Developer survey: We designed a developer

survey based on previous literature and received 170 responses.

Through numerical and thematic analysis, we identify alternative

definitions of flaky tests, the most significant impacts of flaky tests,

the most frequent causes of flaky tests, and the most common

actions developers perform in response to flaky tests (See §2.1).

Contribution 2: StackOverflow threads: Through thematic

analysis of our dataset of 38 StackOverflow threads, we offer a

unique insight into the causes of flaky tests experienced by develop-

ers and the strategies that they suggest to repair them, independent

of what they self-reported in our developer survey (See §2.2).

Contribution 3: Findings and recommendations: We surface

a range of findings that support previous literature and some that

were more unforeseen. From these, we offer actionable recommen-

dations for both software developers and researchers (See §4).

253

2022 IEEE/ACM 44th International Conference on Software Engineering: Software Engineering in Practice (ICSE-SEIP)

http://crossmark.crossref.org/dialog/?doi=10.1145%2F3510457.3513037&domain=pdf&date_stamp=2022-10-17

ICSE-SEIP ’22, May 21–29, 2022, Pittsburgh, PA, USA Owain Parry, Gregory M. Kapfhammer, Michael Hilton, and Phil McMinn

2 METHODOLOGY

To understand how software developers define, experience, and

approach flaky tests, we asked the following research questions:

RQ1: Definition: How do developers define flaky tests?

RQ2: Impacts:What impacts do flaky tests have on developers?

RQ3: Causes:What causes the flaky tests experienced by developers?

RQ4: Actions:What actions do developers take against flaky tests?

To answer these RQs, we used a multi-source study consisting

of a developer survey, with both closed- and open-ended questions,

and an analysis of StackOverflow threads. We performed numerical

analysis on the closed-ended survey questions and thematic analysis

[11] on the open-ended questions and the StackOverflow threads.

Before conducting our study, we received ethical approval for

the developer survey from the University of Sheffield. We include

our participant information sheet in our replication package [6].

2.1 Developer Survey

We designed a survey of 11 questions for software developers. Some

presented a list of prepared statements and asked participants to re-

spond to them in a closed-ended fashion. To ensure their relevance,

we reviewed published research and other gray literature to deter-

mine these statements. We disseminated the survey on Twitter and

LinkedIn, specifically asking for developer participants. We also

circulated the survey among Sheffield Digital, a regional technology

business forum [7]. Our 11 survey questions are as follows:

SQ1: A flaky test is a test case that can both pass and fail without

any changes to the code under test. Do you agree with this definition?

Participants could indicate that they agreed or disagreed. This is

a common definition, though it is not universal. Vahabzadeh et al.

[47] only considered test cases whose non-determinism was caused

by timing or concurrency to be flaky tests. On the other hand, Shi

et al. [41] included test cases with inconsistent coverage in their

study on mitigating the effects of flaky tests on mutation testing.

SQ2: If you answered “No, I do not agree” to the previous question,

please give your own definition of a flaky test. This gave participants

who disagreed with our proposed definition the opportunity to

offer their own. Together with SQ1, these questions address RQ1.

SQ3: How often do you observe flaky tests in the projects you’re

currently working on? Participants could answer Never, A few times

a year, Monthly,Weekly, or Daily. We used this to gauge the preva-

lence of flaky tests and as a demographic variable in our analysis.

SQ4: To what extent do you agree with the following statements:

To address RQ2, this question posed eight statements and asked

participants to rate their agreement on a four-point scale. With

reference to previous literature, the statements are as follows:

SQ4.1: Reliability: Flaky tests reduce the reliability of testing. Va-

habzadeh et al. [47] categorized 443 bug reports regarding test cases.

They found that 97% caused the test to fail without indicating a

bug, i.e., they were false alarms. They categorized 53% of these as

either flaky tests, resource mishandling, or caused by factors in the

execution environment. According to our proposed definition in

SQ1, we also consider the latter two categories as flaky tests.

SQ4.2: Efficiency: Flaky tests reduce the efficiency of testing. A spe-

cific category of flaky tests, known as order-dependent (OD) tests

[26, 43, 50], are influenced by previously executed test cases. Tech-

niques to improve the efficiency of testing by reordering, reducing

or splitting-up the test suite are unsound when OD tests are present.

For instance, in the test suites of 11 Java modules, Lam et al. [27]

found that 23% of OD tests failed after they applied test case priori-

tization, 24% after test case selection, and 5% after parallelization.

SQ4.3: Productivity: Flaky tests lead to a loss of productivity. John

Micco [33] explained that developer productivity relies on the ca-

pability of test cases to identify genuine issues in a timely and

reliable manner. Flaky tests are unreliable and therefore could harm

the productivity of the developers who experience them as well as

those who rely on the productivity of those developers [29].

SQ4.4: Confidence: Flaky tests lead to a loss of confidence in testing.

Given how flaky tests may manifest as a false alarm [47], there

is a danger that developers will lose confidence in testing if they

continuously experience flaky tests. This could lead to a culture of

ignoring tests, which may cause genuine bugs to go unnoticed [45].

SQ4.5: CI: Flaky tests hinder continuous integration (CI). Durieux

et al. [14] analyzed over 75 million build logs on Travis CI. They

found that 47% of previously failing builds that were manually

restarted by a developer subsequently passed. Since no changes

were involved, these builds may have failed due to flaky tests.

SQ4.6: Ignore: Flaky tests make it more likely for you to ignore (po-

tentially genuine) test failures. Martin Fowler [19] explained how

developers may be tempted to ignore flaky test failures. He ex-

plained that if a test suite contains too many flaky tests, developers

could lose the discipline to ignore just the flaky failures. Rahman

et al. [39] found that ignoring test failures, flaky or not, was associ-

ated with a higher volume of crashes due to missed bugs.

SQ4.7: Reproduce: It is difficult to reproduce a flaky test failure.

Lam et al. [28] described how, upon encountering a failing test, a

developer might rerun it in isolation from the rest of the test suite in

order to reproduce the failure and debug the code under test. They

reran in isolation, for 4,000 times each, the 107 flaky tests from 26

Java modules, only reproducing the failures of 57 and concluding

that this may be ineffective at reproducing flaky test failures.

SQ4.8: Differentiate: It is difficult to differentiate between a test

failure due to a genuine bug and a test failure due to flakiness. Lamyaa

Eloussi [18] remarked how flaky tests are a source of wasted time,

particularly during regression testing, where flaky test failures may

appear linked with a commit but can actually be unrelated.

SQ5: In the projects you’re currently working on, how often have

you encountered flaky tests caused by...We gave participants a list

of causes and asked them to rate on a four-point scale how often

they had experienced them. The list of causes is as follows:

SQ5.1:Waiting:Not correctly waiting for the results of asynchronous

calls to become available. This cause has been presented in numerous

studies and is widely agreed upon by researchers to be one of the

leading causes of flaky tests [17, 25, 30, 40]. For example, a flaky

test that spawns a new process to perform an operation but does

not wait for the process to finish falls under this category.

SQ5.2: Concurrency: Synchronization issues between multiple

threads interacting in an unsafe or unanticipated manner (e.g., data

races, atomicity violations, and deadlocks). Like SQ5.1, studies point

to this category as being very common. Eck et al. [17] explained that

flaky tests caused by local thread synchronization issues belong in

this category, while synchronization issues with remote resources,

such as web servers or external processes, would be SQ5.1.

254

Surveying the Developer Experience of Flaky Tests ICSE-SEIP ’22, May 21–29, 2022, Pittsburgh, PA, USA

SQ5.3: Setup/teardown: Tests not properly cleaning up after them-

selves or failing to set up their necessary preconditions. Many studies

identified OD tests to be a very prevalent category of flaky tests

[17, 21, 26, 30]. Bell et al. [9] suggested that one cause may be the

burden of writing correct setup and teardown methods, executed

by a test runner before and after the main body of a test case. Shi

et al. [43] differentiated between victims, an OD test that fails if

executed after a polluter test case, and brittles, an OD test that only

passes if executed before a state-setter. In the former, the victim

does not perform proper setup and/or the polluter does not perform

proper teardown. The latter instance is similar but reversed.

SQ5.4: Resources: Improper management of resources (e.g., not clos-

ing a file or not deallocating memory). The specific case of failing

to release acquired resources (i.e., a resource leak) has been identi-

fied at a generally lower prevalence than the preceding categories

in previous research [17, 21, 25, 30]. Bearing some similarities to

SQ5.3, the test that improperly manages the resource may not be

the test case that is flaky, but rather a subsequently executed test.

SQ5.5: Network: Dependency on a network connection. Any test

case that requires a network connection will inevitably be flaky

since infrastructure issues or periods of high traffic may cause

the test case to fail. Several empirical studies have described this

particular cause, with varying degrees of prevalence [17, 25, 30, 46].

SQ5.6: Random: Not accounting for all the possible outcomes of

random data generators or code that uses them. Test cases that use

random data, or cover code that utilizes randomization, can become

flaky for a variety of reasons. One reason is that it may be difficult

for developers to approximate test oracles, such as the appropriate

range of output values in assertion statements [17, 35]. This is a

particular problem for machine learning applications [15, 16].

SQ5.7: Time/date: Reliance on the local system time/date. Test cases

that depend on time and date are fraught with difficulty, such as

inconsistencies in representation and precision across systems as

well as timezone conversion issues [17, 21, 25, 30].

SQ5.8: Floating point: Inaccuracies when performing floating point

operations. Given their limited precision and other idiosyncrasies,

floating point comparisons can sometimes produce unexpected

results. In the context of flaky tests, previous work generally con-

sidered this specific cause to be quite rare [17, 25, 30].

SQ5.9: Unordered: Assuming a particular iteration order for an

unordered collection-type object (e.g., sets). This is a special case of a

general cause pertaining to assumptions regarding the implemen-

tations of non-deterministic program specifications [22, 42, 49].

SQ5.10: Unknown: Reasons that cannot be precisely determined.

Finally, developers could indicate how often they had encountered

flaky tests whose cause they could not precisely identify.

SQ6: Have you encountered any other causes of flaky tests that

we have not described above? This question gave participants the

chance to tell us about any other causes of flaky tests that we did

not list in SQ5. Together with SQ5, these questions address RQ3.

SQ7: After identifying a flaky test, how often do you... This ques-

tion offered a list of actions and participants could rate how often

they perform them on a four-point scale. They were as follows:

SQ7.1: No action: Take no action. Quite simply, a developer may

choose to take no action when encountering a flaky test.

SQ7.2: Re-run: Re-run the build. Perhaps the most straight-forward

action, a developer may just restart the failing build and hope that

the flaky test passes this time. In their study of Travis CI build logs,

Durieux et al. [14] found this to be a common practice.

SQ7.3: Document: Document and defer (e.g., submit an issue/bug

report). A developer may not have the time to immediately repair

a flaky test and may choose to document it for attention later. For

example, they could raise an issue in a GitHub repository.

SQ7.4: Delete: Delete the test. Another straight-forward action is to

permanently remove the flaky test from the test suite. Recounting

on his experiences at Facebook, Kent Beck remarked how it was

routine to delete non-deterministic test cases [12].

SQ7.5: Quarantine: Quarantine the test. Martin Fowler [19] ad-

vised that flaky tests should be quarantined from the main test suite

into a dedicated test suite that is understood by the development

team to be unreliable. He advised that developers should keep the

quarantined test suite small by promptly fixing flaky tests. Other-

wise, there is a danger of flaky tests being forgotten about and the

whole process becoming equivalent to just deleting test cases.

SQ7.6: Mark skip: Mark the test to be skipped or as an expected

failure (e.g., xfail). Many testing frameworks allow test cases to

be marked as skipped, meaning they are not deleted from the test

suite but are not executed either. Alternatively, some frameworks,

such as pytest, allow test cases to be marked as expected failures or

xfails. This signals to the testing framework that they are expected

to fail, in which case they should not fail the entire test suite.

SQ7.7: Mark re-run: Mark the test to be automatically repeated

(e.g., by using the flaky plugin for pytest). Often via the support of

plugins, some testing frameworks allow test cases to be marked

such that they are repeated some number of times upon failure.

One example of such a plugin is flaky for pytest [10].
SQ7.8: Repair: Attempt to repair the flakiness. Finally, a developer

may attempt to repair the underlying cause of the flaky test rather

than just mitigating it with one of the previous actions.

SQ8: Are there any other actions that you would take that we have

not listed above? In this question, participants could report any

additional actions. Along with SQ7, these questions address RQ4.

SQ9:Which languages are you currently developing in? Partici-

pants could select from a list of popular programming languages,

with an option to specify any other languages that we did not

include. We asked this question to obtain further demographic

information about our participant population.

SQ10: How many years experience do you have in commercial

and/or open-source software development? Participants could select

one of 0–1, 2–4, 5–8, 9–12, or 13+ years. Like SQ3, we used this as

an additional demographic variable in our analysis.

SQ11: Is there anything else that you would like to tell us about

flaky tests? The final question gave participants the opportunity to

relay any miscellaneous insights they had about flaky tests.

2.2 StackOverflow Threads

We analyzed StackOverflow threads where a developer asked for

help addressing one or more flaky tests. We selected StackOverflow

specifically due to its widespread popularity and its use in previous

software engineering research [34]. This analysis adds further depth

to our answer for RQ3 by considering the causes of flaky tests that

developers ask for help with, as opposed to the causes they report as

the most common. It is also free of any self-reporting bias that may

255

ICSE-SEIP ’22, May 21–29, 2022, Pittsburgh, PA, USA Owain Parry, Gregory M. Kapfhammer, Michael Hilton, and Phil McMinn

result from the survey [13]. For RQ4, this analysis offers insights

into how developers repair flaky tests, since our survey only asks

participants how often they attempt to do so.

A thread on StackOverflow consists of a single question followed

by answers. A user can indicate that an answer has addressed

their question by accepting it. To find relevant threads, we used

the website’s search feature. The query we used was “flaky test
hasaccepted:yes”. The latter part of the query is a search operator
that only matches threads where the user who asked the question

has accepted an answer. This is to increase the probability that we

can identify a recommended course of action for RQ4.

From the search results, we created a dataset of relevant threads.

We only included threadswhere the questionwas specifically asking

about the cause of one or more flaky tests and/or how to repair them.

We excluded threads where the question was more tangential, such

as asking how to handle flaky tests in a specific testing framework

[3]. This is because such threads do not present causes or possible

repairs and are therefore of no use for addressing RQ3 or RQ4.

2.3 Analysis

We designed SQ4, SQ5, and SQ7 to be answered using a four-point

Likert scale, quantifying agreement in the case of SQ4 and fre-

quency for SQ5 and SQ7. Each of these questions asked participants

to respond to a list of prepared statements. For each statement, we

assigned a score between 0 and 3 to each point on the Likert scale.

As an example, for each statement of SQ4, participants could select

Strongly disagree, Agree, Disagree, or Strongly disagree, correspond-

ing to a score of 0, 1, 2, or 3 for that statement, respectively. For each

question, we calculated the mean score of each statement across all

participants and four specific populations. The first two populations

were participants who said they experienced flaky tests on at least a

monthly basis and those who experienced them less frequently (see

SQ3). We chose to split the participants by this criterion since those

who frequently experience flaky tests may have different views to

those who experience them rarely [19].

The final two populations were participants who said they had

at least 13 years of software development experience and those who

had fewer (see SQ10). We made this split because, when compared

to participants with less experience, those with more may be better

at accurately diagnosing the causes of flaky tests and may be more

likely to take certain actions to address them. We excluded any

respondent from the analysis of a particular question if they did

not respond to all of that question’s statements. For each question,

we calculated the ranks of every statement, based on mean score,

to quantify the most significant impacts in the case of SQ4 and the

most common causes and actions for SQ5 and SQ7, respectively.

We performed inductive thematic analysis [11] on the responses

to the open-ended survey questions (SQ2, SQ6, SQ8, and SQ11)

and the StackOverflow threads. For each survey question, all four

authors met and discussed each response. We split responses con-

taining logical connectives such as “and” and “or” into their atomic

components. We then assigned one or more labels or codes to each

response, representing its key concepts. By collaboratively perform-

ing the coding, we minimized the impact of any individual biases

and ensured our coding was as consistent as possible. From these

codes we derived a set of themes, representing the definition of flaky

tests, their causes, and developers’ actions against them for SQ2,

SQ6 and SQ8, respectively. For SQ11, the themes represent more

general insights. We performed a very similar procedure for the

StackOverflow threads. Next, we assigned themes regarding causes

and actions to each thread in two separate sessions. Finally, we

encountered several accepted answers prescribing multiple actions,

in which case we assigned them to multiple action themes.

2.4 Threats to Validity

All methodologies carry the risk of biasing results, including this

paper’s. This section discusses both these risks and our mitigations.

Replicability: Can others replicate our results? Our numerical

analysis is straightforward to replicate. We make the response data

from our developer survey and our Python script for performing

our numerical analysis available as part of our replication package

[6]. In general, thematic analysis is more challenging to replicate.

Nonetheless, we include the spreadsheets we used to facilitate our

collaborative thematic analysis in our replication package.

Construct: Are we asking the right questions? The construction

of our study can bias our results, as in any study. To attain the high-

est quality of results possible, we designed a multi-source approach.

Our numerical analysis of the closed-ended survey questions pro-

vides broad, high-level insights. Our thematic analysis of the open-

ended questions offers a more specific, but much more detailed,

understanding of developers’ experiences. Finally, our analysis of

the StackOverflow threads provides an alternative perspective, free

of any potential self-reporting bias [13]. We selected these three

components to collect inherently different but complementary data,

thereby giving a more complete understanding of flaky tests.

Internal: Did we skew the accuracy of our results with how we

collected and analyzed information? It is possible for the results

of surveys to be impacted by biases, from both participants and

researchers. During our numerical analysis, there is little we can do

to mitigate this on the participants’ side, though since the analysis

is purely mathematical in nature, there is very limited scope for

researcher bias. During the thematic analysis, we mitigated any in-

dividual researcher bias by collaboratively performing all analyses.

Due to the nature of our recruitment, we could not verify that par-

ticipants were genuinely software developers. Therefore, we have

no guarantee that our participant population accurately reflects

our target population. We mitigated this by specifically asking for

developers in our Twitter and LinkedIn posts and by making it clear

in our participant information sheet that we were seeking develop-

ers. Furthermore, the technical nature of the questions mean the

survey would be difficult for non-developers to complete.

External: Do our results generalize?We cannot make any claims

regarding the generalization of our results beyond the survey popu-

lation. Even though this is a natural limitation of any survey-based

study, we mitigated it by not targeting any specific organization

and recruiting participants through more than one platform.

3 RESULTS

We received 170 responses to our survey. Figure 1 shows the results

of SQ3 and SQ9. For SQ3, just over half of the participants reported

that they observe flaky tests on at least a monthly basis. This shows

that flaky tests are a frequent phenomenon, especially given that

23 reported experiencing them daily. For SQ10, just under half said

256

Surveying the Developer Experience of Flaky Tests ICSE-SEIP ’22, May 21–29, 2022, Pittsburgh, PA, USA

234427705

SQ3: How often do you observe flaky tests ... ?

Never A few times a year Monthly Weekly Daily

792532268

SQ10: How many years experience ... ?

0 - 1 2 - 4 5 - 8 9 - 12 13 +

Figure 1: Results for SQ3 and SQ10.

they had 13 years or more of software development experience. For

SQ9, the top three languages were JavaScript, Python, and Java. The

distribution roughly corresponds to the most popular languages

according to the 2021 StackOverflow developer survey [8]. This

reassures us that our participant population is generally represen-

tative of the wider community of developers.

After performing our search on StackOverflow, we found 169

threads. We carefully examined each one and narrowed them down

to the 38 that are relevant according to the criteria in Section 2.2.

We now answer each of our research questions using the results

of our analysis of the responses to our survey and the StackOverflow

threads. See Table 1 for the results of our thematic analysis for SQ11.

RQ1: Definition. Of the 169 respondents who answered SQ1,

6.5% disagreed with our proposed definition. In order of prevalence,

the themes following our thematic analysis for SQ2 are:

SQ2t1: Beyond code: The definition extends beyond the test case

code and the code that it covers. Participant 97 (P97) said “... a flaky

test is any test that changes from pass to fail (or vice versa) in

different environments”. P147 relayed a similar view, but specifi-

cally for test cases that only fail in a CI environment. P27 stated

more generally that a test case whose outcome depends on changes

irrelevant to the code under test is flaky. Arguably, this includes the

environmental changes referenced by P97 and P147 and more.

SQ2t2: Flaky code under test: A flaky test can indicate that the

code under test is flawed, rather than the test case itself. In the words

of P155, “... a flaky test is therefore either unreliable itself or it

proves the code under test is flawed and unreliable”. P25 indicated

that the term flaky is inappropriately used to blame test cases when

their flakiness is inevitable if they test nondeterministic code.

SQ2t3: Beyond test outcomes: A test case can be considered flaky

despite having a consistent outcome. P58 wrote “... this includes

pass/fail, but can encompass other aspects such as coverage or test

time”. P25 generalized by considering more abstract characteristics

such as the extent that the test case controls the system under test.

SQ2t4: Learn to live with it: Flakiness is an inevitable aspect of

testing. P62 agreed with our definition, but indicated that some test

cases may be flaky by nature, saying “... not all tests are determin-

istic”. P25 expressed that there may be limited value in labelling

test cases as flaky, since they are an inescapable aspect of testing.

Conceivably, SQ11t5 is a continuation of this concept and indicates

that some participants consider them to have value.

SQ2t5: Usefulness of the test: A test case that cannot effectively

identify bugs is flaky. In reference to our definition, P116 stated “I

think it’s broader than that and includes things like tests that pass

independent of conditions”. P101 said that a test case is flaky if it

cannot clearly identify problems in the code under test. This theme

is similar to SQ2t3 but leans more towards bug-finding capability.

Conclusion for RQ1: Definition: How do developers define

flaky tests? Most participants (93.5%) agreed with our definition

of flaky tests in SQ1. Following our thematic analysis for SQ2, we

identified more general definitions. Some participants indicated

that the definition should consider factors beyond the test case

code or the code under test. Others expressed that only taking

the outcome of a test case into consideration when defining flaky

tests is not enough. They conveyed that other behaviors, such

as coverage, and more abstract properties, such as usefulness,

should be part of the definition. Several offered more digressive

insights, such as test cases should not always be considered at

fault for the flakiness, as it is an inevitable aspect of testing.

RQ2: Impacts. The top third of Table 2 shows the mean scores

and ranks of each impact statement. For all participants, SQ4.5

scored the highest. This indicates that developers strongly agree

with the notion that flaky tests hinder CI. Second and third were

SQ4.3 and SQ4.2, regarding losses to productivity and the effi-

ciency of testing, respectively. The lowest scoring impact was SQ4.8,

which, as illustrated by the distribution bar, was the most evenly

split between agreement and disagreement. This suggests that dif-

ferentiating between a true test failure and a spurious failure due

to flakiness is relatively straightforward for some developers.

The most significant difference in mean score between partici-

pants who experienced flaky tests on at least a monthly basis and

those who did not was for SQ4.6. This indicates that developers

who experience flaky tests more often could be more likely to ig-

nore potentially genuine test failures. Beyond that, the scores are

similar, with both scoring SQ4.5 the highest and SQ4.8 the low-

est. The scores between the participants with at least 13 years of

development experience and those with fewer are also similar.

In SQ11t2, participants expressed anger or frustration at flaky

tests. P96 said they “they’re very annoying”. Along with SQ4.4 and

SQ4.6, this further evidences the psychological cost of flaky tests.

Conclusion for RQ2: Impacts: What impacts do flaky tests

have on developers? Our analysis for SQ4 indicates that devel-

opers strongly agree with the notion that flaky tests hinder CI.

They also agree that flaky tests lead to both a loss of productivity

and a reduction in testing efficiency. Respondents were mixed

with regard to the difficulty of differentiating between a failure

due to a true bug and one due to flakiness, implying that some

developers may not find this challenging. Our analysis also sug-

gests that developers who experience flaky tests more often may

be more likely to ignore potentially genuine test failures.

RQ3: Causes. Themiddle third of Table 2 shows themean scores

of each causewe proposed for SQ5. The causewith the highest score

across all participants was SQ5.3. This suggests that improper setup

and teardown is the most frequent cause of flaky tests. Flakiness

caused by network issues (SQ5.5) and unknown reasons (SQ5.10)

had the second and third highest scores, respectively. This indicates

that the causes of many flaky tests go undiagnosed by developers.

The lowest scoring was SQ5.8 concerning floating point issues.

Comparing the participants who experienced flaky tests at least

monthly to those who did not, there is agreement that SQ5.3, SQ5.5,

and SQ5.8 were the first, second, and least most common causes,

257

ICSE-SEIP ’22, May 21–29, 2022, Pittsburgh, PA, USA Owain Parry, Gregory M. Kapfhammer, Michael Hilton, and Phil McMinn

Table 1: Themes of the responses for SQ11 regarding miscellaneous insights about flaky tests, in order of prevalence.

Title and description Representative quote

SQ11t1: Developer culture: The relationship between flaky tests and test-

ing practices and developer culture.

“It’s often an organizational problem...” – P89

SQ11t2: Emotive response: An expression of anger or other emotion. “They suck.” – P91

SQ11t3: Poor tooling support: Tooling for handling flaky tests is inade-

quate or not well known.

“Library support for automatically handling them in Scala is poor or not

well popularized.” – P7

SQ11t4: Execution environment: The interplay between execution envi-

ronment and flaky tests.

“Caused by poor quality of coding and poor test specification coupled with

a lack of understanding of the environment.” – P101

SQ11t5: Silver lining: Flaky tests may have some utility. “Flaky tests can be valuable as they often point to an underlying weakness

in the codebase.” – P133

SQ11t6: Time/date logic: Test cases handling time/date logic are notori-

ously flaky.

“90% of the time it’s date and or timezone logic ...” – P28

SQ11t7: External service: Flaky tests caused by third party services. “Recently, seen a lot of flaky tests when running CI on Azure due to failures

to download libraries ...” – P31

SQ11t8: Not worth fixing: The resources required to repair flaky tests are

too great to make it worthwhile.

“... We haven’t got the time to address them all.” – P64

Table 2: Results of the numerical analysis of the responses for SQ4, SQ5, and SQ7. The five “Mean Score (Rank)” columns are

the mean scores of each impact, cause, or action for the four specific populations and all participants (All). In each case, the

ranks in descending order of mean score are in parentheses. The final column illustrates the distribution of responses.

Mean Score (Rank)

≥ Monthly (SQ3) ≥ 13 Years (SQ10)

Question Yes No Yes No All Distribution (All)

RQ2: Impacts Strongly disagree, Disagree, Agree, Strongly agree

SQ4.1: Reliability 2.43 (4) 2.47 (2) 2.49 (4) 2.41 (4) 2.45 (4)

SQ4.2: Efficiency 2.53 (3) 2.38 (4) 2.52 (2) 2.42 (3) 2.47 (3)

SQ4.3: Productivity 2.58 (2) 2.41 (3) 2.52 (2) 2.49 (2) 2.50 (2)

SQ4.4: Confidence 2.18 (6) 2.25 (5) 2.27 (5) 2.17 (5) 2.21 (5)

SQ4.5: CI 2.63 (1) 2.63 (1) 2.68 (1) 2.59 (1) 2.63 (1)

SQ4.6: Ignore 2.32 (5) 1.96 (7) 2.21 (6) 2.11 (6) 2.16 (6)

SQ4.7: Reproduce 2.05 (7) 2.14 (6) 2.07 (7) 2.11 (6) 2.09 (7)

SQ4.8: Differentiate 1.70 (8) 1.85 (8) 1.76 (8) 1.77 (8) 1.76 (8)

RQ3: Causes Never, Rarely, Sometimes, Often

SQ5.1: Waiting 1.48 (3) 1.08 (5) 1.26 (4) 1.34 (4) 1.30 (4)

SQ5.2: Concurrency 1.27 (5) 0.95 (7) 1.24 (5) 1.02 (5) 1.12 (5)

SQ5.3: Setup/teardown 1.73 (1) 1.64 (1) 1.84 (1) 1.56 (1) 1.69 (1)

SQ5.4: Resources 0.82 (7) 0.97 (6) 0.93 (7) 0.85 (7) 0.89 (7)

SQ5.5: Network 1.63 (2) 1.21 (2) 1.53 (2) 1.36 (2) 1.44 (2)

SQ5.6: Random 0.69 (8) 0.70 (9) 0.68 (9) 0.70 (8) 0.69 (9)

SQ5.7: Time/date 1.01 (6) 1.12 (4) 1.11 (6) 1.02 (5) 1.06 (6)

SQ5.8: Floating point 0.33 (10) 0.66 (10) 0.59 (10) 0.37 (10) 0.48 (10)

SQ5.9: Unordered 0.69 (8) 0.78 (8) 0.84 (8) 0.63 (9) 0.73 (8)

SQ5.10: Unknown 1.45 (4) 1.16 (3) 1.29 (3) 1.35 (3) 1.32 (3)

RQ4: Actions Never, Rarely, Sometimes, Often

SQ7.1: No action 1.40 (4) 0.91 (5) 1.41 (4) 1.01 (4) 1.19 (4)

SQ7.2: Re-run 2.81 (1) 2.46 (2) 2.68 (1) 2.66 (1) 2.67 (1)

SQ7.3: Document 1.58 (3) 1.67 (3) 1.59 (3) 1.65 (3) 1.62 (3)

SQ7.4: Delete 0.86 (7) 1.06 (4) 1.09 (5) 0.80 (7) 0.94 (5)

SQ7.5: Quarantine 0.74 (8) 0.79 (7) 0.81 (7) 0.73 (8) 0.77 (8)

SQ7.6: Mark skip 0.98 (5) 0.85 (6) 1.04 (6) 0.84 (5) 0.93 (6)

SQ7.7: Mark re-run 0.96 (6) 0.55 (8) 0.74 (8) 0.84 (5) 0.79 (7)

SQ7.8: Repair 2.23 (2) 2.64 (1) 2.53 (2) 2.31 (2) 2.41 (2)

258

Surveying the Developer Experience of Flaky Tests ICSE-SEIP ’22, May 21–29, 2022, Pittsburgh, PA, USA

respectively. The greatest difference in score is for SQ5.1. It could

be that those participants who said they experience flaky tests on

a less than monthly basis do not work on projects that heavily

rely on asynchronicity. This could also explain why these particu-

lar participants do not experience flaky tests frequently, since the

participants who do also scored this cause relatively highly. The

differences in mean scores between participants with at least 13

years experience and those with fewer are comparatively small.

According to these results, time and date (SQ5.7) appears to be a

fairly uncommon cause of flaky tests. Despite this, two participants

made strong statements about how time and date logic is a signifi-

cant cause of flaky tests in SQ11t6. P28 said “date handling is the

worst thing I have ever had to program around”. This suggests that

if a project does rely on time and date logic, this is likely to be a

significant cause of the flaky tests of the project’s test suite.

After our thematic analysis for SQ6, we identified the following

themes, in order of prevalence, regarding additional causes:

SQ6t1: External artifact: An issue in an external service, library,

or other artifact, that is outside the scope and control of the software

under test. As a potential cause of flaky tests, P8 reported “third-

party artifacts, services, or dependencies ... which you do not have

full control of ...”. Responses of this prevalent theme were split

between highlighting instabilities in remote services (in some in-

stances a special case of SQ5.5), and issues in third-party libraries.

The common aspect is that participants did not have control over

the external artifact. On the external services side, SQ11t7 is a

special case of this theme, further evidencing its prevalence.

SQ6t2: Environmental differences: Environmental differences be-

tween local development machines and remote build machines. P21

referred to “environmental differences in local vs CI like different

Java Virtual Machine (JVM) defaults.” Almost all the responses

in this theme made reference to CI. P97 offered a more nuanced

explanation, highlighting how file system latency and concurrency-

related issues may cause code to behave differently on a CI system.

This theme is a special case of SQ11t4 and directly supports SQ2t1.

SQ6t3: Host system issues: Problems regarding the machines run-

ning the test suites. In the words of P155, the most common aspect

of this theme is “changes in hardware that the code and tests are

running on”. In many instances, this is a hardware analogue of

SQ6t2, where a change in a machine is the cause of the flakiness.

SQ6t4: Test data issues: Issues originating from the data used by

test cases. Some participants described flakiness caused specifically

by test data. Most of these responses were brief and made reference

to test data that was “deteriorated”, “changing”, or “external”.

SQ6t5: Resource exhaustion: Limited computational resources,

such as memory and storage. P49 wrote “unrelated system load

on a shared resource causing low-level timeouts”. P133 also made

reference to system load from unrelated processes, giving antivirus

software as an example. Other responses leaned more towards test

cases that consume too many resources themselves. This theme is

distinct from SQ5.4, which is specifically about mismanagement.

SQ6t6: OS differences: Differences between operating systems (OS)

or different versions of the same OS. P62 described their experience

after upgrading to a later version of Windows — “user interface

(UI) changes with new OS. Things like EggPlant, that uses graphics.

Moving to a new version of Windows (I think), changed the bat-

tleship gray ever so slightly and failed our UI tests”. P76 explained

how filesystem differences between OSes can cause flaky tests.

SQ6t7: Virtual machines: Complications arising from the use of

virtual machines or containers. Put simply by P52, “the automation

of virtual machines is asking for trouble”. Vagrant and Docker were

specific technologies referred to by the participants.

SQ6t8: UI testing: Non-determinism inherent to the testing of UIs.

P147 wrote “UI not being in the expected state, i.e., keyboard not

closed, or animations not completed when checking results”. P100

specifically described how “random quirks in how Selenium works”

caused them to have flaky tests. In many instances, this theme is a

special case of SQ5.1, since UI test cases often have to wait for a

specific element of a UI to be in the correct state [38].

SQ6t9: Conversion issues: Inconsistencies when converting be-

tween data representations. In the words of P48, “in my code that

tests database interactions, I’ve run into issues where my coding

language has more time precision than my storage ...”. P103 relayed

a similar experience regarding timestamps. While both participants

referred to time, this theme is applicable to any data type.

SQ6t10: Timeouts: Test execution exceeding a time limit and being

prematurely terminated by the test runner. P76 wrote “not waiting

long enough for an environment to be set up”. P79 referred to input

and output operations occurring within a specific time limit.

We identified eight further themes regarding causes after ana-

lyzing the StackOverflow threads. In order of prevalence:

Ct1: UI Timing: Test case does not wait for a user interface to be in

the correct state. This theme is a subset of SQ5.1 regarding general

asynchronicity and a special case of SQ6t8 pertaining specifically

to timing. This theme is related to SQ6t3 since the execution speed

of the machine is likely to significantly impact any timing issues.

Ct2: Logic error: Error in the logic of the test code or the code under

test. This theme is broadly characterized by an oversight or misun-

derstanding on the part of the author of the test case. In one specific

instance, a test case used an inappropriate method to wait for a

condition in a UI [4]. This led to flakiness by Ct1, though since the

root cause was that the developer misunderstood the use case of

the waiting method, we placed this thread in Ct2.

Ct3: Shared state: Test case depends on state shared with other test

cases. In one thread, the question describes a test case that shares a

database connection with other test cases and only passes when

executed in isolation [2]. This is an example of an OD test.

Ct4: Unknown: The cause was never resolved. Like its counterpart

in the survey, SQ5.10, this theme was fairly prevalent.

Ct5: Setup/teardown: Test case does not properly clean up after

itself or fails to set up its necessary preconditions. This is equivalent

to SQ5.3. While OD tests were the main motivation for SQ5.3, the

threads in Ct5 describe test cases that do not appear to be OD. This

theme was uncommon yet SQ5.3 was rated as the most common

by participants in the survey. This suggests that the most common

causes are not necessarily the hardest to repair.

Ct6: External library: Bug in a third-party library or package.

This is a special case of SQ6t1 pertaining specifically to third-party

libraries. In one instance, an intermittent NullPointerException
from an external package is the cause of flaky tests [1].

Ct7: Resource leak: Test case does not release acquired resources.

This theme is a subset of SQ5.4 specifically regarding test cases

259

ICSE-SEIP ’22, May 21–29, 2022, Pittsburgh, PA, USA Owain Parry, Gregory M. Kapfhammer, Michael Hilton, and Phil McMinn

that do not release resources, rather than general mismanagement.

It is similar but not equivalent to SQ6t5, since the exhaustion of

computational resources is not necessarily due to mismanagement.

Ct8: Improper mocking: Test case does not mock an object or

method correctly. Like Ct2, this theme is unique to the StackOver-

flow analysis and describes flaky tests caused by improper mocking.

A mock is a method or object that simulates the behavior of its real

counterpart to make testing more straightforward [44].

Conclusion for RQ3: Causes:What causes the flaky tests ex-

perienced by developers? Our analysis for SQ5 suggests that

improper setup and teardown is the most common cause of

flaky tests. Second to that is network-related issues and third

is unknown causes, implying that many flaky tests may go un-

diagnosed by software developers. Participants rated floating

point idiosyncrasies to be the rarest cause. Our thematic analy-

sis for SQ6 revealed additional insights into the causes of flaky

tests. The most common theme pertains to issues in external ar-

tifacts that the developer has no control over. Examples include

third-party libraries and remote services. Another describes dif-

ferences between local development environments and remote

build environments, such as CI. Our analysis of the StackOver-

flow threads, with respect to the causes of flaky tests, revealed

timing issues in testing user interfaces to be the most common

theme. Like the developer survey, our StackOverflow analysis

revealed that the causes were never resolved in many threads.

RQ4: Actions. The bottom third of Table 2 presents the numer-

ical analysis for SQ7. The most common action as scored by all

participants was to simply re-run the failing build (SQ7.2). The sec-

ond most common was to attempt to repair the flaky test (SQ7.8).

After these two, there is a significant drop in mean score for the

remaining actions. This implies that re-running the build and at-

tempting to repair the flaky test are generally the most common

actions developers take when encountering flaky tests.

The greatest difference in score between the participants who

experienced flaky tests at least monthly and those who did not

was for SQ7.1. This suggests that developers who experience flaky

tests more often are more likely to take no action. There is also a

considerable difference for SQ7.8, implying that developers who

experience flaky tests less frequently are more likely to attempt

to repair them. Furthermore, SQ11t8 indicates that the costs of

repair are too great for the potential gains. Arguably, this is less

applicable when developers rarely experience flaky tests, which

could partially explain the differences in SQ7.1 and SQ7.8.

Following our thematic analysis for SQ8, we identified the fol-

lowing themes regarding actions, in order of prevalence:

SQ8t1: Emotive response: An expression of anger or some other

emotion. This theme is generally equivalent to SQ11t2, but specifi-

cally in the context of a direct response to flaky tests.

SQ8t2: Alert proper person: Inform other member or members of

the development team about the flaky test. In the words of P52, “tell

the person who maintains that codebase”. This theme is similar to

SQ7.3 but is more direct than just documenting the flaky test.

SQ8t3: Reorder tests: Adjust the order of the test cases.We placed

two responses under this theme but they both had different moti-

vations. P7 said “reorder tests to fail faster” and P111 said “reorder

tests in case they are order-dependent”. The former seems to be

referring to test case prioritization [37]. The latter is talking about

OD tests, but rather than repairing them they are seeking to find a

test run order that does not manifest their flakiness [27].

SQ8t4: Repair resource: Ensure a resource is in the correct state.

Summarized by P8, “when the test depends on the global state ... the

test needs to be neither deleted/skipped, nor repaired, but rather,

the state of the resource needs to be repaired ...”. This theme is

arguably a manifestation of SQ11t5, since the flaky test highlights

a flaw in an aspect of the software beyond the test case code.

SQ8t5: Rewrite code under test: Modify the code under test, as

opposed to the test code. P133 said “rewrite problematic code to make

it more testable”. This has clear links with SQ2t2, since it proves

that a flaky test can highlight issues in the code under test. It is also

a manifestation of SQ11t5, for the same reason as SQ8t4.

In order of prevalence, our analysis of the StackOverflow threads

also resulted in the following themes pertaining to actions:

At1: Fix logic: Repair a logic error. All instances of this theme

address an instance of Ct2. Given that Ct2 is generally about API

misuse, or inappropriate use of specific elements of an API, answers

in At1 typically highlight the correct API usage or recommend a

more appropriate method for a particular purpose [4].

At2: Wait for condition: Add an explicit wait for a condition. An-

swers in this theme address most instances of Ct1 and prescribe

waiting for a specific condition, rather than a fixed time delay.

At3: Add mock: Mock out an object or method. This theme directly

addresses Ct8 but is also applicable to many other causes, such as

Ct1. In one instance, the answer recommends mocking to address

a timing issue that causes flakiness in a user interface test [5].

At4: Add/adjust external library: Use a third-party library or

adjust the version of a library already in use. All answers in this

theme address an instance ofCt6. In one specific thread, the answer

highlights the latest version of a particular third-party library that

previously contained a bug that was causing the flakiness [1].

At5: Fix setup/teardown: Repair insufficient setup or teardown

procedure. This theme directly addressesCt5 by suggesting changes

to setup and/or teardown methods that were causing flakiness.

At6: Isolate state: Remove dependency on a shared state. This theme

mostly addresses Ct4, but not always. One accepted answer sug-

gests decoupling shared database connections [2].

Conclusion for RQ4: Actions:What actions do developers take

against flaky tests? For SQ7, our analysis revealed that re-

running the failing build and attempting to repair the flaky

test were the most common actions as rated by the participants.

The remaining actions scored significantly lower, indicating that

developers are unlikely to perform them. Our findings also sug-

gested that developers who experience flaky tests more often

are more likely to take no action in response to them. While not

a bona fide action, our thematic analysis for SQ8 showed that

an emotive response was very common among the participants.

Other themes involved alerting another member of the devel-

opment team, reordering test cases, or repairing aspects of the

software under test, but not the flaky test itself. Our thematic

analysis of the StackOverflow threads demonstrated that many

action themes directly address a single cause theme.

260

Surveying the Developer Experience of Flaky Tests ICSE-SEIP ’22, May 21–29, 2022, Pittsburgh, PA, USA

Table 3: Our recommendations, supported by our results and previous literature. Targets researchers (�) and developers (�).

Supported by

Recommendation Results Literature

� R1: Consider beyond code. The definition of a flaky test should include factors beyond the test case code

or the code under test, such as properties of the execution environment. Developers should consider the

behavior of test cases in different environments, particularly when going from a local environment to CI.

SQ2t1, SQ6t2, SQ11t4 [22, 42, 49]

� R2: Not completely useless. Flaky tests may indicate a flaw in the code under test or another aspect of

the software system. Therefore, developers should not write them off as completely useless.

SQ2t2, SQ8t4, SQ8t5,

SQ11t5

[17]

� R3: Impact on CI. Flaky tests can become an obstacle to the effective deployment of CI. Researchers

should consider the creation and evaluation of new approaches to better mitigate this trend.

SQ4.5 [14, 23]

� R4: Careful setup/teardown. Insufficient setup and teardown is a common cause of flaky tests. Developers

should exercise particular care when writing setup and teardown methods for their test suites.

SQ5.3, Ct5, At5 [9]

� R5: Identify root causes. It is difficult to manually determine the root cause of many flaky tests. Re-

searchers should continue to develop automated techniques for this challenging task [24].

SQ5.10, Ct4 [30]

� R6: Repair promptly. The results suggest that participants who said they experienced flaky on at least a

monthly basis may be more likely to ignore genuine test failures, more likely to take no action in response

to flaky tests, and less likely to attempt to repair them. Therefore, developers should to repair flaky tests as

soon as possible after identifying them to avoid them accumulating and potentially being ignored.

SQ4.6, SQ7.1, SQ7.8,

SQ11t8

[19]

4 RECOMMENDATIONS

Table 3 lists our six recommendations. We found that SQ2t1, the

most common theme in SQ2, extends our proposed definition of

flaky tests to consider factors beyond the code of the test case and

the code under test, particularly the execution environment. Fur-

thermore, SQ6t2 represents environmental differences as a cause

of flaky tests and is a special case of SQ11t4. This supports a line

of research that considers how changes in the implementations

of third-party libraries can manifest flaky tests [22, 42, 49]. These

results and previous studies are the basis for R1.

The second most common theme in SQ2, SQ2t2, represents the

idea that flaky tests can indicate that the code under test is flawed.

Following our thematic analysis for SQ8, we identified SQ8t4 and

SQ8t5, regarding repairing a resource and the code under test

respectively, as actions in response to flaky tests. Furthermore,

SQ11t5 relays the concept that flaky tests have utility. These results

form the foundation of R2, along with one of the findings of Eck

et al. [17], that, for some types of flaky test, developers sometimes

considered the cause to originate from the code under test.

For SQ4, we found that participants strongly agreed that flaky

tests hinder CI. This is the motivation for R3, along with the find-

ings of Hilton et al. [23], who asked developers to estimate the

number of weekly failing CI builds caused by genuine and flaky

test failures. They found no significant difference between the two

estimates. This also supports Durieux et al. [14], who found that

47% of previously failing CI builds that were manually restarted

passed without changes, suggesting the influence of flaky tests.

Previous studies identified waiting for asynchronous events

(SQ5.1) and concurrency (SQ5.2) to be the most common causes

of flaky tests [17, 30, 40]. According to our survey, these causes

were only the fourth and fifth most common. We found inadequate

setup/teardown (SQ5.3) to be the most common and also identified

this theme in our StackOverflow analysis (Ct5 and At5), forming

the basis of R4. However, these studies were based on previously

repaired flaky tests, whereas in our case, the participants reported

the frequency of each cause according to their experience. It could

be that the most common causes of flaky tests are not necessarily

the ones that developers prioritize for repair. On the other hand,

Bell et al. [9] suggested that the difficulty of writing correct setup

and teardown could cause OD tests. However, as attested by Ct5,

this cause may not always result in a flaky test that is OD.

For SQ5, we found that participants scored SQ5.10, regarding

unknown causes, as the third highest overall. Similarly, we found

that the cause of the flakiness was never resolved in many of the

StackOverflow threads (Ct4). This is reflected by Luo et al. [30], who

categorized the causes of the repaired flakiness in 201 commits and

found “Hard to classify” to be the second most common category.

Taken together, these results are our rationale for R5.

We found that participants who said they experience flaky tests

on at least a monthly basis scored SQ4.6, regarding ignoring poten-

tially genuine test failures, considerably higher than those who did

not. Martin Fowler [19] wrote that flaky tests have an “infectious”

quality, and as they proliferate, developers may ignore test failures

in general. Furthermore, our results for SQ7.1 and SQ7.8 indicate

that developers who experience more flaky tests may be more likely

to take no action against them and less likely to attempt to repair

them. Therefore, we suggest R6 in response to these findings.

5 RELATEDWORK

Luo et al. [30] performed an empirical study that investigated the

causes, manifestations, and fixing strategies of flaky tests. As objects

of analysis, they used 201 commits that repaired flaky tests in a

range of Apache Software Foundation projects. They introduced ten

cause categories that have since been used in subsequent research

[17, 21, 25, 40]. They found that the top three causes of flaky tests

were asynchronicity, concurrency, and test-order dependency (OD

tests). Unlike our study, Luo et al. did not base any of their findings

on the self-reported experiences of developers. In that respect, their

methodology is closer to our StackOverflow analysis.

Eck et al. [17] performed a related study. They asked 21 develop-

ers from Mozilla to classify 200 flaky tests that they had previously

repaired and also conducted a broader online survey, receiving

261

ICSE-SEIP ’22, May 21–29, 2022, Pittsburgh, PA, USA Owain Parry, Gregory M. Kapfhammer, Michael Hilton, and Phil McMinn

121 responses. Using Luo et al.’s ten categories as a starting point,

through their Mozilla study, they identified four additional causes,

including overly restrictive assertion ranges and platform depen-

dency (broadly similar to SQ6t2 and SQ6t6, respectively). To keep

our results as general as possible, we chose not to focus on any

particular organization in any part of our study. Furthermore, we

included additional objects of analysis beyond developers’ testi-

monies to limit any self-reporting bias [13]. As part of their broader

survey, they asked developers to estimate how often they dealt with

flaky tests. Their results are very similar to ours for SQ3.

As part of a wider study on the uptake of CI, Hilton et al. [23]

deployed a survey at Pivotal Software. Among other questions,

the survey asked developers to estimate the number of CI builds

failing each week due to genuine test failures and due to flaky

test failures. Following a Pearson’s chi-squared test, they found

no statistically significant difference between the genuine and the

flaky distributions. Our findings confirm that flaky tests are very

prevalent (SQ3) and that flaky tests are a hindrance to CI (SQ4.5).

Gruber et al. [20] also deployed a survey about flaky tests, with

a specific focus on the support developers need from tools.

6 CONCLUSION AND FUTUREWORK

We deployed an online survey about flaky tests, not restricted to

any organization, and received 170 responses. It focused on under-

standing how developers define and react to flaky tests and their

experiences of the causes and impacts. We also procured a dataset

of 38 StackOverflow threads, upon which we performed thematic

analysis to identify further causes and repair strategies. We were

able to offer six actionable recommendations for both researchers

and developers. As future work, we plan to conduct a larger-scale

study with a greater volume of participants to improve the general-

izability of our findings. We also intend to include focused surveys

and interviews of developers from a variety of organizations.

REFERENCES
[1] 2014. NPE Inside Robotium. https://stackoverflow.com/questions/23519395/npe-

inside-robotiumk
[2] 2016. Flaky Tests with DatabaseCleaner and Transactions. How to

Debug? https://stackoverflow.com/questions/37560303/flaky-tests-with-
databasecleaner-and-transactions-how-to-debug

[3] 2016. How Do You Label Flaky Tests Using JUnit? https://stackoverflow.com/
questions/39538400/how-do-you-label-flaky-tests-using-junit

[4] 2017. Can I Detect If an Element (Button) Is "Clickable" In My
RSpecs? https://stackoverflow.com/questions/48027118/can-i-detect-if-an-
element-button-is-clickable-in-my-rspecs

[5] 2019. Detox: Detect That Element was Displayed. https://stackoverflow.com/
questions/59412749/detox-detect-that-element-was-displayed

[6] 2021. Replication Package. https://github.com/flake-it/flaky-test-survey-
replication-package

[7] 2021. Sheffield Digital. https://sheffield.digital/
[8] 2021. StackOverflowDeveloper Survey. https://insights.stackoverflow.com/survey/

2021
[9] J. Bell and G. Kaiser. 2014. Unit Test Virtualization with VMVM. In Proc. ICSE.
[10] Box. 2021. Flaky. https://github.com/box/flaky
[11] D. S. Cruzes and T. Dyba. 2011. Recommended Steps for Thematic Synthesis in

Software Engineering. In Proc. ESEM.
[12] Software Engineering Daily. 2019. Facebook Engineering Process with Kent

Beck. Retrieved 9/01/2021 from https://softwareengineeringdaily.com/2019/
08/28/facebook-engineering-process-with-kent-beck/

[13] S. Donaldson and E. Grant-Vallone. 2002. Understanding Self-Report Bias in
Organizational Behavior Research. Journal of Business and Psychology 17, 2
(2002).

[14] T. Durieux, C. L. Goues, M. Hilton, and R. Abreu. 2020. Empirical Study of
Restarted and Flaky Builds on Travis CI. In Proc. MSR.

[15] S. Dutta, A. Shi, R. Choudhary, Z. Zhang, A. Jain, andMisailovic S. 2020. Detecting
Flaky Tests in Probabilistic and Machine Learning Applications. In Proc. ISSTA.

[16] S. Dutta, A. Shi, and Misailovic S. 2021. FLEX: Fixing Flaky Tests in Machine
Learning Projects by Updating Assertion Bounds. In Proc. ESEC/FSE.

[17] M. Eck, F. Palomba, M. Castelluccio, and A. Bacchelli. 2019. Understanding Flaky
Tests: The Developer’s Perspective. In Proc. ESEC/FSE.

[18] L. Eloussi. 2016. Flaky Tests (And How to Avoid Them). https://engineering.
salesforce.com/flaky-tests-and-how-to-avoid-them-25b84b756f60

[19] M. Fowler. 2011. Eradicating Non-Determinism in Tests. https://martinfowler.
com/articles/nonDeterminism.html

[20] M. Gruber, , and G. Fraser. 2022. A Survey on How Test Flakiness Affects
Developers and What Support They Need to Address It. In Proc. ICST.

[21] M. Gruber, S. Lukasczyk, F. Kroiß, and G. Fraser. 2021. An Empirical Study of
Flaky Tests in Python. In Proc. ICST.

[22] A. Gyori, B. Lambeth, A. Shi, O. Legunsen, and D. Marinov. 2015. NonDex: A
Tool for Detecting and Debugging Wrong Assumptions on Java API Specification.
In Proc. FSE.

[23] M. Hilton, N. Nelson, T. Tunnell, D. Marinov, and D. Dig. 2017. Trade-Offs in
Continuous Integration: Assurance, Security, and Flexibility. In Proc. FSE.

[24] W. Lam, P. Godefroid, S. Nath, A. Santhiar, and S. Thummalapenta. 2019. Root
Causing Flaky Tests in a Large-Scale Industrial Setting. In Proc. ISSTA.

[25] W. Lam, K. Muşlu, H. Sajnani, and S. Thummalapenta. 2020. A Study on the
Lifecycle of Flaky Tests. In Proc. ICSE.

[26] W. Lam, R. Oei, A. Shi, D. Marinov, and T. Xie. 2019. IDFlakies: A Framework for
Detecting and Partially Classifying Flaky Tests. In Proc. ICST.

[27] W. Lam, A. Shi, R. Oei, S. Zhang, M. D. Ernst, and T. Xie. 2020. Dependent-Test-
Aware Regression Testing Techniques. In Proc. ISSTA.

[28] W. Lam, S. Winter, A. Astorga, V. Stodden, and D. Marinov. 2020. Understanding
Reproducibility and Characteristics of Flaky Tests Through Test Reruns in Java
Projects. In Proc. ISSRE.

[29] B. Lee. 2019. We Have a Flaky Test Problem. https://medium.com/scopedev/how-
can-we-peacefully-co-exist-with-flaky-tests-3c8f94fba166

[30] Q. Luo, F. Hariri, L. Eloussi, and D. Marinov. 2014. An Empirical Analysis of
Flaky Tests. In Proc. FSE.

[31] M. Machalica, A. Samylkin, M. Porth, and S. Chandra. 2019. Predictive Test
Selection. In Proc. ICSE-SEIP.

[32] A. Memon, Z. Gao, B. Nguyen, S. Dhanda, E. Nickell, R. Siemborski, and J. Micco.
2017. Taming Google-Scale Continuous Testing. In Proc. ICSE-SEIP.

[33] J. Micco. 2016. Flaky Tests at Google and How We Mitigate Them. https://testing.
googleblog.com/2016/05/flaky-tests-at-google-and-how-we.html

[34] S. M. Nasehi, J. Sillito, F. Maurer, and C. Burns. 2012. What Makes a Good Code
Example?: A Study of Programming Q&A in StackOverflow. In Proc. ICSM.

[35] M. Nejadgholi and J. Yang. 2019. A Study of Oracle Approximations in Testing
Deep Learning Libraries. In Proc. ASE.

[36] Q. Peng, A. Shi, and L. Zhang. 2020. Empirically Revisiting and Enhancing
IR-Based Test-Case Prioritization. In Proc. ISSTA.

[37] J. A. Prado Lima and S. R. Vergilio. 2020. Test Case Prioritization in Continuous
Integration Environments: A Systematic Mapping Study. IST (2020).

[38] K. Presler-Marshall, E. Horton, S. Heckman, and K. T. Stolee. 2019. Wait Wait.
No, Tell Me. Analyzing Selenium Configuration Effects on Test Flakiness. In Proc.
AST.

[39] M. T. Rahman and P. C. Rigby. 2018. The Impact of Failing, Flaky, and High
Failure Tests on the Number of Crash Reports Associated With Firefox Builds. In
Proc. ESEC/FSE.

[40] A. Romano, Z. Song, S. Grandhi, W. Yang, and W. Wang. 2021. An Empirical
Analysis of UI-based Flaky Tests. In Proc. ICSE.

[41] A. Shi, J. Bell, and D. Marinov. 2019. Mitigating the Effects of Flaky Tests on
Mutation Testing. In Proc. ISSTA.

[42] A. Shi, A. Gyori, O. Legunsen, and D. Marinov. 2016. Detecting Assumptions
on Deterministic Implementations of Non-Deterministic Specifications. In Proc.
ICST.

[43] A. Shi, W. Lam, R. Oei, T. Xie, and D. Marinov. 2019. iFixFlakies: A Framework
for Automatically Fixing Order-Dependent Flaky Tests. In Proc. ESEC/FSE.

[44] D. Spadini, M. Aniche, M. Bruntink, and A. Bacchelli. 2017. To Mock or Not to
Mock? An Empirical Study on Mocking Practices. In Proc. MSR.

[45] P. Sudarshan. 2012. No More Flaky Tests on the Go Team. https://www.
thoughtworks.com/en-gb/insights/blog/no-more-flaky-tests-go-team

[46] S. Thorve, C. Sreshtha, and N. Meng. 2018. An Empirical Study of Flaky Tests in
Android Apps. In Proc. ICSME.

[47] A. Vahabzadeh, A. A. Fard, and A. Mesbah. 2015. An Empirical Study of Bugs in
Test Code. In Proc. ICSME.

[48] Z. Yu, F. Fahid, T. Menzies, G. Rothermel, K. Patrick, and S. Cherian. 2019. TER-
MINATOR: Better Automated UI Test Case Prioritization. In Proc. ESEC/FSE.

[49] P. Zhang, Y. Jiang, A. Wei, V. Stodden, D. Marinov, and A. Shi. 2021. Domain-
Specific Fixes for Flaky Tests with Wrong Assumptions on Underdetermined
Specifications. In Proc. ICSE.

[50] S. Zhang, D. Jalali, J. Wuttke, K. Muşlu, W. Lam, M. D. Ernst, and D. Notkin. 2014.
Empirically Revisiting the Test Independence Assumption. In Proc. ISSTA.

262

